Forecasting in Dynamic Factor Models Subject to Structural Instability

نویسنده

  • James H. Stock
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Forecasting in Dynamic Factor Models Using Bayesian Model Averaging

This paper considers the problem of forecasting in dynamic factor models using Bayesian model averaging. Theoretical justi…cations for averaging across models, as opposed to selecting a single model, are given. Practical methods for implementing Bayesian model averaging with factor models are described. These methods involve algorithms which simulate from the space de…ned by all possible models...

متن کامل

Common Factors of CPI Sub-aggregates and Forecast of Inflation

In this paper, we investigate whether incorporating common factors of CPI sub-aggregates into forecasting models increases the accuracy of forecasts of inflation. We extract factors by both static and dynamic factor models and then embed them in ARMA and VAR models. Using quarterly data of Iran’s CPI and its sub-aggregates, the models are estimated over 1990:2 to 2008:2 and out of sample ...

متن کامل

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

Model Instability and Choice of Observation Window in Autoregressive Models∗

Recent evidence suggests that many economic time series are subject to structural breaks, yet little is known about the properties of alternative forecasting methods for such data. This paper proposes a new method for determining the window size that explores the trade-off between bias and forecast error variance to minimize the mean squared forecast error in the presence of breaks in autoregre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007